RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 4, Pages 792–808 (Mi smj2785)

This article is cited in 4 papers

Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain

A. M. Kytmanova, S. G. Myslivets

a Siberian Federal University, Institute of Mathematics, Krasnoyarsk, Russia

Abstract: We consider the continuous functions on the boundary of a bounded $n$-circular domain $D$ in $\mathbb C^n$, $n>1$, which admit one-dimensional holomorphic extension along a family of complex straight lines passing through finitely many points of $D$. The question is addressed of the existence of a holomorphic extension of these functions to $D$.

Keywords: holomorphic extension, $n$-circular domains, Szegö integral representation.

UDC: 517.55

Received: 18.09.2015

DOI: 10.17377/smzh.2016.57.406


 English version:
Siberian Mathematical Journal, 2016, 57:4, 618–631

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025