RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 4, Pages 850–865 (Mi smj2788)

This article is cited in 7 papers

Isotopes of the alternative monster and the Skosyrsky algebra

S. V. Pchelintsev

Financial University Under the Government of the Russian Federation, Moscow, Russia

Abstract: We prove that the isotopes of the alternative monster and the Skosyrsky algebra satisfy the identity $\prod^4_{i=1}[x_i,y_i]=0$. Hence, the algebras themselves satisfy the identity $\prod^4_{i=1}(c,x_i,y_i)=0$. We also show that none of the identities $\prod^n_{i=1}(c,x_i,y_i)=0$ holds in all commutative alternative nil-algebras of index 3. Thus, we refute the Grishkov–Shestakov hypothesis about the structure of the free finitely generated commutative alternative nil-algebras of index 3.

Keywords: alternative algebra, prime exceptional algebra, deformations of alternative algebras, alternative monster, Skosyrsky algebra identity, isotope.

UDC: 512.554.5

Received: 15.09.2015

DOI: 10.17377/smzh.2016.57.409


 English version:
Siberian Mathematical Journal, 2016, 57:4, 666–678

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025