RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 5, Pages 1048–1053 (Mi smj2805)

This article is cited in 3 papers

Commuting Krichever–Novikov differential operators with polynomial coefficients

A. B. Zheglova, A. E. Mironovb, B. T. Saparbayevab

a Moscow State University, Moscow, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: Under study are some commuting rank 2 differential operators with polynomial coefficients. We prove that, for every spectral curve of the form $w^2=z^3+c_2z^2+c_1z+c_0$ with arbitrary coefficients $c_i$, there exist commuting nonselfadjoint operators of orders 4 and 6 with polynomial coefficients of arbitrary degree.

Keywords: commuting differential operators.

UDC: 517.957

Received: 20.01.2016

DOI: 10.17377/smzh.2016.57.510


 English version:
Siberian Mathematical Journal, 2016, 57:5, 819–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024