RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 6, Pages 1346–1360 (Mi smj2828)

This article is cited in 1 paper

The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

A. D. Mednykhabc, I. A. Mednykhabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Siberian Federal University, Krasnoyarsk, Russia

Abstract: Denote the set of all holomorphic mappings of a genus 3 Riemann surface $S_3$ onto a genus 2 Riemann surface $S_2$ by $\operatorname{Hol}(S_3,S_2)$. Call two mappings $f$ and $g$ in $\operatorname{Hol}(S_3,S_2)$ equivalent whenever there exist conformal automorphisms $\alpha$ and $\beta$ of $S_3$ and $S_2$ respectively with $f\circ\alpha=\beta\circ g$. It is known that $\operatorname{Hol}(S_3,S_2)$ always consists of at most two equivalence classes.
We obtain the following results: If $\operatorname{Hol}(S_3,S_2)$ consists of two equivalence classes then both $S_3$ and $S_2$ can be defined by real algebraic equations; furthermore, for every pair of inequivalent mappings $f$ and $g$ in $\operatorname{Hol}(S_3,S_2)$ there exist anticonformal automorphisms $\alpha^-$ and $\beta^-$ with $f\circ\alpha^-=\beta^-\circ g$. Up to conformal equivalence, there exist exactly three pairs of Riemann surfaces $(S_3,S_2)$ such that $\operatorname{Hol}(S_3,S_2)$ consists of two equivalence classes.

Keywords: Riemann surface, holomorphic mapping, anticonformal involution, real curve, conformal automorphism.

UDC: 517.545

Received: 09.12.2015

DOI: 10.17377/smzh.2016.57.612


 English version:
Siberian Mathematical Journal, 2016, 57:6, 1055–1065

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024