RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2016 Volume 57, Number 6, Pages 1382–1388 (Mi smj2831)

This article is cited in 1 paper

An extendability condition for bilipschitz functions

D. A. Trotsenkoab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We give a new definition of $\lambda$-relatively connected set, some generalization of a uniformly perfect set. This definition is equivalent to the old definition for large $\lambda$ but makes it possible to obtain stable properties for small $\lambda$. We prove the $\lambda$-relative connectedness of Cantor sets for corresponding $\lambda$. The main result is as follows: $A\subset\mathbb R$ admits the extension of all $M$-bilipschitz functions $f\colon A\to\mathbb R$ to $M$-bilipschitz functions $F\colon\mathbb R\to\mathbb R$ if and only if $A$ is $\lambda$-relatively connected. We give exact estimates of the dependence of $M$ and $\lambda$.

Keywords: bilipschitz mapping, extension of a mapping.

UDC: 517.54

Received: 24.01.2016

DOI: 10.17377/smzh.2016.57.615


 English version:
Siberian Mathematical Journal, 2016, 57:6, 1082–1087

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024