RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 1, Pages 64–82 (Mi smj2840)

This article is cited in 1 paper

The $\mathfrak F^\omega$-normalizers of finite groups

V. A. Vedernikova, M. M. Sorokinab

a Moscow City Teachers' Training University, Moscow, Russia
b Bryansk State University, Bryansk, Russia

Abstract: Given a nonempty set $\omega$ of primes and a nonempty formation $\mathfrak F$ of finite groups, we define the $\mathfrak F^\omega$-normalizer in a finite group and study their properties (existence, invariance under certain homomorphisms, conjugacy, embedding, and so on) in the case that $\mathfrak F$ is an $\omega$-local formation. We so develop the results of Carter, Hawkes, and Shemetkov on the $\mathfrak F$-normalizers in groups.

Keywords: finite group, $\omega$-local formation, $\mathfrak F^\omega$-critical subgroup, $\mathfrak F^\omega$-normalizer.

UDC: 512.542

MSC: 35R30

Received: 24.03.2016

DOI: 10.17377/smzh.2017.58.107


 English version:
Siberian Mathematical Journal, 2017, 58:1, 49–62

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025