RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 5, Pages 1098–1109 (Mi smj2922)

This article is cited in 1 paper

Characterization of simple symplectic groups of degree $4$ over locally finite fields of characteristic $2$ in the class of periodic groups

D. V. Lytkinaab, V. D. Mazurovcb

a Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: Suppose that each finite subgroup of even order of a periodic group containing an element of order $2$ lies in a subgroup isomorphic to a simple symplectic group of degree $4$ over some finite field of characteristic $2$. We prove that in that case the group is isomorphic to a simple symplectic group $S_4(Q)$ over some locally finite field $Q$ of characteristic $2$.

Keywords: periodic group, period, symplectic group, locally finite group.

UDC: 512.54

MSC: 35R30

Received: 09.06.2017

DOI: 10.17377/smzh.2017.58.512


 English version:
Siberian Mathematical Journal, 2017, 58:5, 850–858

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025