RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2017 Volume 58, Number 6, Pages 1341–1353 (Mi smj2942)

This article is cited in 2 papers

Slices and levels of extensions of the minimal logic

L. L. Maksimovaab, V. F. Yunab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We consider two classifications of extensions of Johansson's minimal logic J. Logics and then calculi are divided into levels and slices with numbers from 0 to $\omega$. We prove that the first classification is strongly decidable over J, i.e., from any finite list $Rul$ of axiom schemes and inference rules, we can effectively compute the level number of the calculus $(J+Rul)$. We prove the strong decidability of each slice with finite number: for each $n$ and arbitrary finite $Rul$, we can effectively check whether the calculus $(J+Rul)$ belongs to the nth slice.

Keywords: minimal logic, Kripke frame, decidability, slice, level, recognizable logic.

UDC: 510.6

MSC: 35R30

Received: 10.08.2016

DOI: 10.17377/smzh.2017.58.613


 English version:
Siberian Mathematical Journal, 2017, 58:6, 1042–1051

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024