RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 1, Pages 65–77 (Mi smj2954)

This article is cited in 3 papers

Finite groups with three given subgroups

A. F. Vasil'eva, T. I. Vasil'evaab, K. L. Parfenkova

a Francisk Skorina Gomel State University, Gomel, Belarus
b Belarusian State University of Transport, Gomel, Belarus

Abstract: Given a hereditary saturated formation $\mathfrak F$ of soluble groups, we study finite groups with three $\mathfrak F$-subgroups of coprime indices. We obtain the new criteria for these groups to lie in the Shemetkov formations, the formations of all supersoluble groups, the formations of all groups with nilpotent commutator subgroup, and other formations.

Keywords: finite group, supersoluble group, $\mathrm w$-supersoluble group, formation, hereditary saturated formation, $\mathfrak F$-subnormal subgroup.

UDC: 512.542

MSC: 35R30

Received: 25.04.2017

DOI: 10.17377/smzh.2018.59.106


 English version:
Siberian Mathematical Journal, 2018, 59:1, 50–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025