RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 2, Pages 277–292 (Mi smj2971)

This article is cited in 3 papers

Estimates of the Fourier widths of the classes of periodic functions with given majorant of the mixed modulus of smoothness

Sh. A. Balgimbayeva, T. I. Smirnov

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan

Abstract: We obtain some order-sharp estimates for the Fourier widths of Nikol'skii–Besov and Lizorkin–Triebel function classes with given majorant of the mixed modulus of smoothness in the Lebesgue space for a few relations between the parameters of the class and the space. The upper bounds follow from estimates of the approximation of functions of these classes by special partial sums of their Fourier series with respect to the multiple system of periodized Meyer wavelets.

Keywords: Fourier width, function space, wavelet system, mixed modulus of smoothness, majorant.

UDC: 517.5

MSC: 35R30

Received: 29.06.2016
Revised: 10.01.2018

DOI: 10.17377/smzh.2018.59.204


 English version:
Siberian Mathematical Journal, 2018, 59:2, 217–230

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025