RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 2, Pages 378–395 (Mi smj2980)

This article is cited in 1 paper

Complexity of the isomorphism problem for computable free projective planes of finite rank

N. T. Kogabaevab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Studying computable representations of projective planes, we prove that the isomorphism problem in the class of free projective planes of finite rank is an $m$-complete $\Delta^0_3$-set within the class.

Keywords: computable structure, computable representation, isomorphism problem, projective plane, free projective plane.

UDC: 510.53+514.146

MSC: 35R30

Received: 18.05.2017

DOI: 10.17377/smzh.2018.59.213


 English version:
Siberian Mathematical Journal, 2018, 59:2, 295–308

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025