RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 2, Pages 396–411 (Mi smj2981)

This article is cited in 2 papers

A semifield plane of odd order admitting an autotopism subgroup isomorphic to $A_5$

O. V. Kravtsova, B. K. Durakov

Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, Russia

Abstract: We develop an approach to constructing and classifying semifield projective planes with the use of a spread set. The famous conjecture is discussed on the solvability of the full collineation group of a finite semifield nondesarguesian plane. We construct a matrix representation of a spread set of a semifield plane of odd order admitting an autotopism subgroup isomorphic to the alternating group $A_5$ and find a series of semifield planes of odd order not admitting $A_5$.

Keywords: semifield plane, collineation group, alternating group, spread set.

UDC: 519.145

MSC: 51A35, 51A40, 51E15

Received: 23.06.2017

DOI: 10.17377/smzh.2018.59.214


 English version:
Siberian Mathematical Journal, 2018, 59:2, 309–322

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025