Abstract:
We obtain integro-local limit theorems in the phase space for compound renewal processes under Cramér's moment condition. These theorems apply in a domain analogous to Cramér's zone of deviations for random walks. It includes the zone of normal and moderately large deviations. Under the same conditions we establish some integro-local theorems for finite-dimensional distributions of compound renewal processes.
Keywords:compound renewal process, large deviations, integro-local theorem, renewal measure, Cramér's condition, deviation function, second deviation function.