RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 3, Pages 529–534 (Mi smj2991)

This article is cited in 3 papers

On minimal isotropic tori in $\mathbb CP^3$

M. S. Yermentay

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We show that one of the classes of minimal tori in $\mathbb CP^3$ is determined by the smooth periodic solutions to the sinh-Gordon equation. We also construct examples of such surfaces in terms of Jacobi elliptic functions.

Keywords: minimal isotropic torus, sinh-Gordon equation.

UDC: 514.763.47

Received: 19.09.2017

DOI: 10.17377/smzh.2018.59.304


 English version:
Siberian Mathematical Journal, 2018, 59:3, 415–419

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024