RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 3, Pages 561–579 (Mi smj2994)

This article is cited in 5 papers

Maximal surfaces on five-dimensional group structures

M. B. Karmanova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: For the classes of the mappings Lipschitz in the sub-Riemannian sense and taking values in the Heisenberg group we introduce some suitable notions of variation of an argument and the corresponding increment of the area functional and derive several basic properties of maximal surfaces on the five-dimensional sub-Lorentzian structures.

Keywords: sub-Lorentzian structures, graph surface, area formula, variation of an argument, area functional, maximal surface.

UDC: 517.2+514.7

MSC: 35R30

Received: 28.12.2015

DOI: 10.17377/smzh.2018.59.307


 English version:
Siberian Mathematical Journal, 2018, 59:3, 442–457

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025