RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 4, Pages 719–735 (Mi smj3006)

This article is cited in 7 papers

Degrees of autostability relative to strong constructivizations of graphs

N. A. Bazhenovab, M. I. Marchukab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We show that each computably enumerable Turing degree is a degree of autostability relative to strong constructivizations for a decidable directed graph. We construct a decidable undirected graph whose autostability spectrum relative to strong constructivizations is equal to the set of all $PA$-degrees.

Keywords: computable model, strongly constructivizable model, autostability, autostability relative to strong constructivizations, degree of autostability relative to strong constructivizations, autostability spectrum relative to strong constructivizations, $PA$-degree, computably enumerable degree, graph.

UDC: 510.5

MSC: 35R30

Received: 01.11.2017

DOI: 10.17377/smzh.2018.59.401


 English version:
Siberian Mathematical Journal, 2018, 59:4, 565–577

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024