RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 4, Pages 773–790 (Mi smj3009)

This article is cited in 10 papers

On the pronormality of subgroups of odd index in some extensions of finite groups

W. Guoa, N. V. Maslovabc, D. O. Revindea

a University of Science and Technology of China, Hefei, P. R. China
b Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
c Ural Federal University, Ekaterinburg, Russia
d Sobolev Institute of Mathematics, Novosibirsk, Russia
e Novosibirsk State University, Novosibirsk, Russia

Abstract: We study finite groups with the following property $(*)$: All subgroups of odd index are pronormal. Suppose that $G$ has a normal subgroup $A$ with property $(*)$, and the Sylow $2$-subgroups of $G/A$ are self-normalizing. We prove that $G$ has property $(*)$ if and only if so does $N_G(T)/T$, where $T$ is a Sylow $2$-subgroup of $A$. This leads to a few results that can be used for the classification of finite simple groups with property $(*)$.

Keywords: finite group, pronormal subgroup, Sylow $2$-subgroup, subgroup of odd index, wreath product, direct product, self-normalizing subgroup, simple group, symplectic group.

UDC: 512.542

Received: 11.10.2017

DOI: 10.17377/smzh.2018.59.404


 English version:
Siberian Mathematical Journal, 2018, 59:4, 610–622

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024