RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 4, Pages 834–857 (Mi smj3013)

This article is cited in 2 papers

Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces

M. B. Karmanova

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We study the class of codimension 2 graph surfaces over some three-dimensional Lie groups and establish some analogs of the differential properties of the corresponding graph mappings. Moreover, we derive the area formula and describe the classes of minimal surfaces of codimension 1 and 2.

Keywords: three-dimensional Lie group, three-dimensional Carnot-Carathéodory space, graph mapping, polynomial sub-Riemannian differentiability, area formula, minimal surface.

UDC: 517.2+517.4+514.7

MSC: 35R30

Received: 01.02.2016
Revised: 30.01.2018

DOI: 10.17377/smzh.2018.59.408


 English version:
Siberian Mathematical Journal, 2018, 59:4, 657–676

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025