RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 5, Pages 1020–1056 (Mi smj3027)

This article is cited in 12 papers

Basics of the quasiconformal analysis of a two-index scale of spatial mappings

S. K. Vodopyanovabc

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
c Peoples' Friendship University of Russia, Moscow, Russia

Abstract: We define a scale of mappings that depends on two real parameters $p$ and $q$, $n-1\leq q\leq p<\infty$, and a weight function $\theta$ In the case of $q=p=n$, $\theta\equiv1$, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems.

Keywords: quasiconformal analysis, Sobolev space, capacity estimate, theorem on removable singularities.

UDC: 517.518+517.54

Received: 28.06.2018

DOI: 10.17377/smzh.2018.59.507


 English version:
Siberian Mathematical Journal, 2018, 59:5, 805–834

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025