RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 5, Pages 1057–1065 (Mi smj3028)

This article is cited in 2 papers

The Fourier–Faber–Schauder series unconditionally divergent in measure

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Yerevan, Armenia
b Russian-Armenian University, Yerevan, Armenia

Abstract: We prove that, for every $\varepsilon\in (0,1)$, there is a measurable set $E\subset[0,1]$ whose measure $|E|$ satisfies the estimate $|E|>1-\varepsilon$ and, for every function $f\in C_{[0,1]}$, there is $\tilde f\in C_{[0,1]}$ coinciding with $f$ on $E$ whose expansion n the Faber–Schauder system diverges in measure after a rearrangement.

Keywords: uniform convergence, Faber–Schauder system, convergence in measure.

UDC: 517.51

Received: 11.12.2017

DOI: 10.17377/smzh.2018.59.508


 English version:
Siberian Mathematical Journal, 2018, 59:5, 835–842

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024