RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 5, Pages 1159–1170 (Mi smj3036)

This article is cited in 1 paper

Supersolubility of a finite group with normally embedded maximal subgroups in Sylow subgroups

V. S. Monakhova, A. A. Trofimukb

a Francisk Skorina Gomel State University, Gomel, Belarus
b Pushkin Brest State University, Brest, Belarus

Abstract: Let $P$ be a subgroup of a Sylow subgroup of a finite group $G$. If $P$ is a Sylow subgroup of some normal subgroup of $G$ then $P$ is called normally embedded in $G$. We establish tests for a finite group $G$ to be $p$-supersoluble provided that every maximal subgroup of a Sylow $p$-subgroup of $X$ is normally embedded in $G$. We study the cases when $X$ is a normal subgroup of $G$, $X=O_{p',p}(H)$, and $X=F^\star(H)$ where $H$ is a normal subgroup of $G$.

Keywords: $p$-supersoluble group, normally embedded subgroup, maximal subgroup, Sylow subgroup.

UDC: 512.542

Received: 29.01.2018

DOI: 10.17377/smzh.2018.59.516


 English version:
Siberian Mathematical Journal, 2018, 59:5, 922–930

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024