RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 6, Pages 1240–1267 (Mi smj3041)

This article is cited in 12 papers

Differentiability of mappings of the Sobolev space $W^1_{n-1}$ with conditions on the distortion function

S. K. Vodopyanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We define two scales of the mappings that depend on two real parameters $p$ and $q$, with $n-1\leq q\leq p<\infty$, as well as a weight function $\theta$. The case $q=p=n$ and $\theta\equiv1$ yields the well-known mappings with bounded distortion. The mappings of a two-index scale are applied to solve a series of problems of global analysis and applications. The main result of the article is the a.e. differentiability of mappings of two-index scales.

Keywords: quasiconformal analysis, Sobolev space, capacity estimate, differentiability, Liouville theorem.

UDC: 517.518+517.54

MSC: 35R30

Received: 11.07.2018

DOI: 10.17377/smzh.2018.59.603


 English version:
Siberian Mathematical Journal, 2018, 59:6, 983–1005

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025