RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2018 Volume 59, Number 6, Pages 1291–1302 (Mi smj3044)

This article is cited in 5 papers

The Poincaré inequality and $p$-connectedness of a stratified set

N. S. Dairbekov, O. M. Penkin, L. O. Sarybekova

Kazakh-British Technical University, Almaty, Kazakhstan

Abstract: We extend the Poincaré inequality to functions of Sobolev type on a stratified set. The integrability exponents in these analogs depend on the geometric characteristics of the stratified set which show to what extent their strata are connected with each other and the boundary. We apply the results to proving the solvability of boundary value problems for the $p$-Laplacian with boundary conditions of Neumann or Wentzel type.

Keywords: Poincaré inequality, stratified set, $p$-Laplacian.

UDC: 517.51+517.95

Received: 11.04.2018

DOI: 10.17377/smzh.2018.59.606


 English version:
Siberian Mathematical Journal, 2018, 59:6, 1024–1033

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025