RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2019 Volume 60, Number 3, Pages 599–609 (Mi smj3097)

This article is cited in 3 papers

Partial decidable presentations in hyperarithmetic

I. Sh. Kalimullina, V. G. Puzarenkobc, M. Kh. Faizrahmanova

a Kazan (Volga Region) Federal University, Kazan, Russia
b Sobolev Institute of Mathematics, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia

Abstract: We study the problem of the existence of decidable and positive $\Pi_1^1$- and $\Sigma_1^1$-numberings of the families of $\Pi_1^1$- and $\Sigma_1^1$-cones with respect to inclusion. Some laws are found that reflect the presence of decidable computable $\Pi_1^1$- and $\Sigma_1^1$-numberings of these families in dependence on the analytical complexity of the set defining a cone.

Keywords: numbering, decidable numbering, positive numbering, computable numbering, computable set, computably enumerable set, $e$-reducibility, hyperarithmetic set, constructible admissible set.

UDC: 510.5

Received: 08.06.2018
Revised: 25.10.2018
Accepted: 19.11.2018

DOI: 10.33048/smzh.2019.60.309


 English version:
Siberian Mathematical Journal, 2019, 60:3, 464–471

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025