RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2019 Volume 60, Number 5, Pages 996–1034 (Mi smj3130)

This article is cited in 6 papers

Isomorphisms of Sobolev spaces on Riemannian manifolds and quasiconformal mappings

S. K. Vodopyanovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We prove that a measurable mapping of domains in a complete Riemannian manifold induces an isomorphism of Sobolev spaces with the first generalized derivatives whose summability exponent equals the (Hausdorff) dimension of the manifold if and only if the mapping coincides with some quasiconformal mapping almost everywhere.

Keywords: Riemannian manifold, quasiconformal mapping, Sobolev space, composition operator.

UDC: 517.518+517.54

Received: 27.03.2019
Revised: 27.03.2019
Accepted: 15.05.2019

DOI: 10.33048/smzh.2019.60.503


 English version:
Siberian Mathematical Journal, 2019, 60:5, 774–804

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025