RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 1, Pages 17–28 (Mi smj5962)

This article is cited in 2 papers

The anick complex and the hochschild cohomology of the manturov (2,3)-group

H. Alhusseina, P. S. Kolesnikovb

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: The Manturov $(2,3)$-group $G_3^2$ is the group generated by three elements $a$, $b$, and $c$ with defining relations $a^2=b^2=c^2=(abc)^2=1$. We explicitly calculate the Anick chain complex for $G_3^2$ by algebraic discrete Morse theory and evaluate the Hochschild cohomology groups of the group algebra $\Bbbk G_3^2$ with coefficients in all 1-dimensional bimodules over a field $\Bbbk $ of characteristic zero.

Keywords: hochschild cohomology, anick resolution, gröbner–Shirshov basis, morse matching.

UDC: 512.664.2

Received: 26.03.2019
Revised: 09.07.2019
Accepted: 24.07.2019

DOI: 10.33048/smzh.2020.61.102


 English version:
Siberian Mathematical Journal, 2020, 61:1, 11–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024