RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 1, Pages 120–136 (Mi smj5968)

This article is cited in 1 paper

On the $\pmb{\forall}\pmb{\exists}$-theories of free projective planes

N. T. Kogabaevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: Studying the elementary properties of free projective planes of finite rank, we prove that for $m>n$, an arbitrary $\forall\exists\forall$-formula $\Phi(\bar{y})$, and a tuple $\bar{u}$ of elements of the free projective plane $\frak{F}_n$ if $\Phi(\bar{u})$ holds on the plane $\frak{F}_m$ then $\Phi(\bar{u})$ holds on the plane $\frak{F}_n$ too. This implies the coincidence of the $\forall\exists$-theories of free projective planes of different finite ranks.

Keywords: elementary theory, $\forall\exists$-theory, projective plane, free projective plane, configuration, incidence.

UDC: 510.8+514.146

Received: 23.01.2019
Revised: 26.04.2019
Accepted: 15.05.2019

DOI: 10.33048/smzh.2020.61.108


 English version:
Siberian Mathematical Journal, 2020, 61:1, 95–108

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025