RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 2, Pages 239–254 (Mi smj5978)

Rings whose every right ideal is a finite direct sum of automorphism-invariant right ideals

A. N. Abyzova, T. H. Phanb, C. Q. Truongc

a Kazan (Volga Region) Federal University
b Ton Duc Thang University, Ho Chi Minh City, Vietnam
c The University of Danang

Abstract: We study the rings $R$ whose every right ideal is a finite direct sum of automorphism-invariant right $R$-modules. These rings are called right $\Sigma$-$a$-rings. We find a representation in the form of block upper triangular rings of formal matrices for the indecomposable right Artinian right hereditary right $\Sigma$-$a$-rings.

Keywords: automorphism-invariant module, $\Sigma$-$a$-ring, regular ring, hereditary Artinian ring, serial ring.

UDC: 512.55

MSC: 35R30

Received: 03.08.2019
Revised: 12.09.2019
Accepted: 18.10.2019

DOI: 10.33048/smzh.2020.61.201


 English version:
Siberian Mathematical Journal, 2020, 61:2, 187–198

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025