RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 2, Pages 314–321 (Mi smj5983)

This article is cited in 6 papers

Inequalities for determinants and characterization of the trace

A. M. Bikchentaev

Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University

Abstract: Let $\operatorname{tr}$ be the canonical trace on the full matrix algebra ${\Cal M}_ n$ with unit $I$. We prove that if some analog of classical inequalities for the determinant and trace (or the permanent and trace) of matrices holds for a positive functional $\varphi $ on ${\Cal M}_n$ with $\varphi (I) = n$, then $\varphi = \operatorname{tr}$. Also, we generalize Fischer's inequality for determinants and establish a new inequality for the trace of the matrix exponential.

Keywords: linear functional, matrix, trace, determinant, permanent, matrix exponential, Fischer inequality.

UDC: 512.643:517.982

Received: 25.09.2019
Revised: 30.09.2019
Accepted: 18.10.2019

DOI: 10.33048/smzh.2020.61.206


 English version:
Siberian Mathematical Journal, 2020, 61:2, 248–254

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024