RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 2, Pages 330–336 (Mi smj5985)

This article is cited in 3 papers

Extension of positive operators

K. Yu. Il'inaa, Z. A. Kusraevabc

a North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
b Regional mathematical center of Southern Federal University, Rostov-on-Don
c Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences, Vladikavkaz

Abstract: The main result states that if $E$ is a separable Fréchet lattice and $F$ is a (locally solid) topological vector lattice with the $\sigma$-interpolation property then each positive linear operator $T_0$ from a majorizing subspace $G\subset E$ into $F$ admits extension to a continuous positive linear operator $T$ from $E$ into $F$. This fact is proved by using only the axiom of countable choice.

Keywords: topological vector lattice, Fréchet lattice, separability, $\sigma$-interpolation property, majorizing subspace, positive operator, axiom of countable choice.

UDC: 517.98

MSC: 35R30

Received: 04.06.2019
Revised: 29.10.2019
Accepted: 25.12.2019

DOI: 10.33048/smzh.2020.61.208


 English version:
Siberian Mathematical Journal, 2020, 61:2, 261–265

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024