RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 3, Pages 513–527 (Mi smj5998)

This article is cited in 2 papers

Absolute convergence of the double fourier–franklin series

G. G. Gevorkyan, M. G. Grigoryan

Yerevan State University

Abstract: We prove that, for every $0<\epsilon<1$, there exists a measurable set $E\subset{T=[0},1]^{2}$ with measure $|E|>1-\epsilon$ such that, for all $f\in L^{1}({T})$ and $0<\eta<1$, we can find $\tilde f \in L^{1}({T})$ with $\iint\nolimits_{T}| f(x,y)-\tilde f (x,y)| dxdy\leq\eta$ coinciding with $f(x,y)$ on $E$ whose double Fourier–Franklin series converges absolutely to $f$ almost everywhere on $T$.

Keywords: double Fourier series, Franklin system, absolute convergence.

UDC: 517.51

MSC: 35R30

Received: 17.08.2019
Revised: 17.08.2019
Accepted: 19.02.2020

DOI: 10.33048/smzh.2020.61.303


 English version:
Siberian Mathematical Journal, 2020, 61:3, 403–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024