RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 6, Pages 1212–1233 (Mi smj6048)

On solvability of one class of quasielliptic systems

L. N. Bondar', G. V. Demidenko

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We study the class of systems of differential equations defined by one class of matrix quasielliptic operators and establish solvability conditions for the systems and boundary value problems on ${\Bbb R}^n_+$ in the special scales of weighted Sobolev spaces $W^{l}_{p,\sigma}$. We construct the integral representations of solutions and obtain estimates for the solutions.

Keywords: quasielliptic operators, boundary value problem, integral representation of solutions, weighted Sobolev space.

UDC: 517.983+519.635.4

Received: 02.09.2020
Revised: 02.09.2020
Accepted: 09.10.2020

DOI: 10.33048/smzh.2020.61.602


 English version:
Siberian Mathematical Journal, 2020, 61:6, 963–982

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025