RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2020 Volume 61, Number 6, Pages 1359–1365 (Mi smj6055)

This article is cited in 2 papers

On recognition of the sporadic simple groups $hs$, $j_3$, $suz$, $o'n$, $ly$, $th$, $fi_{23}$, and $fi_{24}'$ by the gruenberg–kegel graph

A. S. Kondrat'evab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: The Gruenberg–Kegel graph (the prime graph) of a finite group $G$ is the graph whose vertices are the prime divisors of the order of $G$ and two different vertices $p$ and $q$ are adjacent if and only if $G$ contains an element of order $pq$. We find all finite groups with the same Gruenberg–Kegel graph as $S$ for each of the sporadic groups $S$ isomorphic to $HS$, $J_3$, $Suz$, $O'N$, $Ly$, $Th$, $Fi_{23}$, or $Fi_{24}'$. In particular, we establish the recognition by the Gruenberg–Kegel graph for these eight groups $S$.

Keywords: finite group, simple group, sporadic group, recognition, Gruenberg–Kegel graph.

UDC: 512.542

MSC: 35R30

Received: 11.06.2020
Revised: 15.07.2020
Accepted: 10.08.2020

DOI: 10.33048/smzh.2020.61.609


 English version:
Siberian Mathematical Journal, 2020, 61:6, 1087–1092

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024