RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 1, Pages 3–18 (Mi smj7533)

This article is cited in 5 papers

Rings over which matrices are sums of idempotent and $q$-potent matrices

A. N. Abyzov, D. T. Tapkin

Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We study the rings over which each square matrix is the sum of an idempotent matrix and a $q$-potent matrix. We also show that if $F$ is a finite field not isomorphic to $\Bbb{F}_3$ and $q>1$ is odd then each square matrix over $F$ is the sum of an idempotent matrix and a $q$-potent matrix if and only if $q-1$ is divisible by $| F | -1$.

Keywords: idempotent, $q$-potent, Frobenius normal form.

UDC: 512.55

Received: 11.05.2020
Revised: 01.06.2020
Accepted: 17.06.2020

DOI: 10.33048/smzh.2021.62.101


 English version:
Siberian Mathematical Journal, 2021, 62:1, 1–13

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024