RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 1, Pages 19–30 (Mi smj7534)

This article is cited in 3 papers

Multivalued quasimöbius mappings from circle to circle

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We prove that if a multivalued mapping $F$ of circle to circle has the $\eta$-BAD property (bounded distortion of generalized angles with control function $\eta$) then there exist a positive integer $N$ and a quasimöbius homeomorphism $\varphi$ of a circle into itself such that the left inverse mapping to $F$ is of the form $(\varphi(z))^N$. Moreover, $\varphi$ is a locally $\omega$-quasimöbius mapping with $\omega$ depending only on $\eta$ and $N$.

Keywords: quasimöbius mapping, quasisymmetric mapping, multivalued mapping, generalized angle, BAD property, local quasimöbius property.

UDC: 517.54

Received: 20.05.2020
Revised: 21.08.2020
Accepted: 09.10.2020

DOI: 10.33048/smzh.2021.62.102


 English version:
Siberian Mathematical Journal, 2021, 62:1, 14–22

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025