RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 1, Pages 226–234 (Mi smj7552)

This article is cited in 3 papers

Locally finite groups with prescribed structure of finite subgroups

A. A. Shlepkin

Siberian Federal University, Krasnoyarsk, Russia

Abstract: Let $\mathfrak{M}$ be a set of finite groups. Given a group $G$, denote the set of all subgroups of $G$ isomorphic to the elements of $\mathfrak{M}$ by $\mathfrak{M}(G)$. A group $G$ is called saturated by groups in $\mathfrak{M}$ or by $\mathfrak{M}$ for brevity, if each finite subgroup of $G$ lies in some element of $\mathfrak{M}(G)$. We prove that every locally finite group $G$ saturated by $\mathfrak{M}=\{GL_m(p^n)\}$, with $m > 1$ fixed, is isomorphic to $GL_m(F)$ for a suitable locally finite field $F$.

Keywords: locally finite group, general linear group, saturation.

UDC: 512.542

MSC: 35R30

Received: 13.06.2020
Revised: 31.08.2020
Accepted: 09.10.2020

DOI: 10.33048/smzh.2021.62.120


 English version:
Siberian Mathematical Journal, 2021, 62:1, 182–188

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025