RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 2, Pages 387–401 (Mi smj7562)

This article is cited in 5 papers

Submaximal soluble subgroups of odd index in alternating groups

D. O. Revinab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: Let $\mathfrak{X}$ be a class of finite groups containing a group of even order and closed under subgroups, homomorphic images, and extensions. Then each finite group possesses a maximal $\mathfrak{X}$-subgroup of odd index and the study of the subgroups can be reduced to the study of the so-called submaximal $\mathfrak{X}$-subgroups of odd index in simple groups. We prove a theorem that deduces the description of submaximal $\mathfrak{X}$-subgroups of odd index in an alternating group from the description of maximal $\mathfrak{X}$-subgroups of odd index in the corresponding symmetric group. In consequence, we classify the submaximal soluble subgroups of odd index in alternating groups up to conjugacy.

Keywords: complete class of finite groups, subgroup of odd index, alternating group, symmetric group, soluble group, maximal soluble group, submaximal soluble group.

UDC: 512.542

MSC: 35R30

Received: 18.08.2020
Revised: 18.08.2020
Accepted: 18.11.2020

DOI: 10.33048/smzh.2021.62.210


 English version:
Siberian Mathematical Journal, 2021, 62:2, 313–323

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025