RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 3, Pages 477–497 (Mi smj7570)

This article is cited in 6 papers

Abnormal extremals of left-invariant sub-Finsler quasimetrics on four-dimensional Lie groups

V. N. Berestovskii, I. A. Zubareva

Sobolev Institute of Mathematics, 4 Koptuyg Av., Novosibirsk 630090, Russia

Abstract: We find the abnormal extremals on four-dimensional connected Lie groups with left-invariant sub-Finsler quasimetric defined by a seminorm on a two-dimensional subspace of the Lie algebra generating the algebra. In terms of the structure constants of a Lie algebra and the Minkowski support function of the unit ball of the seminorm on the two-dimensional subspace of a Lie algebra which defines a quasimetric, we establish a criterion for the strict abnormality of these extremals.

Keywords: extremal, left-invariant sub-Finsler quasimetric, Lie algebra, optimal control, polar, Pontryagin maximum principle, (strictly) abnormal extremal, time-optimal problem.

UDC: 514.752.8+514.763+514.765+514.764.227

Received: 04.11.2020
Revised: 04.11.2020
Accepted: 24.02.2021

DOI: 10.33048/smzh.2021.62.301


 English version:
Siberian Mathematical Journal, 2021, 62:3, 383–399

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025