RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 3, Pages 514–524 (Mi smj7573)

Automorphisms of the Gersten group

F. A. Dudkinab, E. A. Shaporinac

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Omsk Division of the Sobolev Institute of Mathematics, Omsk, Russia
c Novosibirsk State University, Novosibirsk, Russia

Abstract: The Gersten group $G$ is the split extension $F_3\rtimes_\varphi{\Bbb Z}$ of the free group $F_3$ with basis $\{a,b,c\}$ by the automorphism $\varphi: a\mapsto a, b\mapsto ba, c\mapsto ca^2$. We describe the generators and structure of the group $\operatorname{Out}(G)$ and prove that $\operatorname{Out}(G)\cong(F_3\times{\Bbb Z}^3)\rtimes({\Bbb Z}_2\times{\Bbb Z}_2)$.

Keywords: free group, automorphism, outer automorphism group, Gersten group.

UDC: 512.54

Received: 09.06.2020
Revised: 26.12.2020
Accepted: 24.02.2021

DOI: 10.33048/smzh.2021.62.304


 English version:
Siberian Mathematical Journal, 2021, 62:3, 413–422

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025