RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 3, Pages 555–562 (Mi smj7576)

The universality of some compositions on short intervals

A. Laurinčikas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

Abstract: We obtain approximation theorems for analytic functions by the shifts $F(\zeta(s+i\tau))$ with $\tau \in {\Bbb R}$, where $\zeta(s)$ is the Riemann $\zeta$-function, while $F$ is some operator on the space of analytic functions, on short intervals $[T,T+H]$ with $T^{1/3}(\log T)^{26/15}\leq H\leq T$ as $T\to\infty$.

Keywords: Riemann $\zeta$-function, space of analytic functions, Voronin theorem, universality.

UDC: 511.32

MSC: 35R30

Received: 25.12.2020
Revised: 25.12.2020
Accepted: 22.01.2021

DOI: 10.33048/smzh.2021.62.307


 English version:
Siberian Mathematical Journal, 2021, 62:3, 449–454

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025