RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 3, Pages 595–602 (Mi smj7580)

On stable extremals of the potential energy functional

N. M. Poluboyarova

Volgograd State University, Volgograd, Russia

Abstract: We study the problem of the stability of the extremals of the potential energy functional. By the stability of an extremal surface we mean the sign-definiteness of its second variation. For estimating the second variation of the functional, we use the properties of the eigenvalues of symmetric matrices. Also, we prove an analog of Alexandrov's Theorem on the variational property of a sphere.

Keywords: variation of a functional, instability of a surface, stability of a surface, potential energy functional, area-type functional, extremal surface.

UDC: 514.752+514.764.274+517.97

Received: 12.11.2020
Revised: 23.03.2021
Accepted: 14.04.2021

DOI: 10.33048/smzh.2021.62.311


 English version:
Siberian Mathematical Journal, 2021, 62:3, 482–488

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025