RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 4, Pages 721–735 (Mi smj7590)

This article is cited in 6 papers

Separated lattices of multiply $\sigma$-local formations

N. N. Vorob'ev, I. I. Stasel'ko, A. O. Hojagulyyev

Vitebsk State University, Vitebsk, Belarus

Abstract: Let $n > 0$ and let $\sigma = \{\sigma_i \mid i \in I\}$ be a partition of the set of all primes ${\Bbb P}$. We prove that the lattice of all $n$-multiply $\sigma$-local formations is inductive and $\mathfrak{G}$-separated.

Keywords: finite group, formation of groups, formation $\sigma$-function, $n$-multiply $\sigma$-local formation, lattice of formations, inductive lattice of formations, separated lattice of formations.

UDC: 512.542

Received: 04.09.2020
Revised: 19.04.2021
Accepted: 11.06.2021

DOI: 10.33048/smzh.2021.62.402


 English version:
Siberian Mathematical Journal, 2021, 62:4, 586–597

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025