RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 4, Pages 747–757 (Mi smj7592)

On unconditional and absolute convergence of the Haar series in the metric of $L^{p}[0,1]$ with $0<p<1$

M. G. Grigoryan

Yerevan State University, Yerevan, Armenia

Abstract: We prove that there exists a universal Haar series of the form $\sum\nolimits_{k=0}^{\infty}a_{k}h_{k}(x)$ with $a_{k}\searrow 0$ such that, for all $0<p<1$ and $f\in L^{p}[0,1)$, there is a numeric sequence $\{\delta_{k}:\delta_{k}=1$ or $0$, $k=0,1,2,\dots \}$, for which the series $\sum\nolimits_{k=0}^{\infty}\delta_{k}a_{k}h_{k}(x)$ converges absolutely to $f(x)$ in $ L^{p}[0,1)$.

Keywords: Haar system, unconditional and absolute convergence, $L^{p}[0,1)$ with $0<p<1$.

UDC: 517.51

Received: 05.11.2020
Revised: 25.04.2021
Accepted: 11.06.2021

DOI: 10.33048/smzh.2021.62.404


 English version:
Siberian Mathematical Journal, 2021, 62:4, 607–615

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024