RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 4, Pages 764–783 (Mi smj7594)

This article is cited in 4 papers

Intersections of three nilpotent subgroups in a finite group

V. I. Zenkovab

a Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia
b Ural Federal University, Yekaterinburg, Russia

Abstract: We complete the proof of the theorem that any nilpotent subgroups $A$, $B$, and $C$ of a finite group $G$ satisfy the inclusion $A\cap B^x\cap C^y\le F(G)$, where $F(G)$ is the Fitting subgroup of $G$ and $x$ and $y$ are some elements in $G$. When $A=B=C$, we get an affirmative answer to Questions 17.40 and 19.37 from The Kourovka Notebook. The proof uses the classification of finite simple groups.

Keywords: finite group, nilpotent subgroup, intersection of subgroups, Fitting subgroup.

UDC: 512.542

Received: 18.05.2020
Revised: 03.06.2021
Accepted: 11.06.2021

DOI: 10.33048/smzh.2021.62.406


 English version:
Siberian Mathematical Journal, 2021, 62:4, 621–637

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025