RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 5, Pages 1073–1083 (Mi smj7615)

A Dedekind criterion over valued fields

L. El Fadila, M. Boulagouaza, A. Deajimb

a Department of Mathematics, Faculty of Sciences Dhar-Mahraz, University of Sidi Mohamed Ben Abdellah, Fes, Morocco
b Department of Mathematics, King Khalid University, Abha, Saudi Arabia

Abstract: Let $(K,\nu)$ be an arbitrary-rank valued field, let $R_\nu$ be the valuation ring of $(K,\nu)$, and let $K(\alpha)/K$ be a separable finite field extension generated over $K$ by a root of a monic irreducible polynomial $f\in R_\nu[X]$. We give some necessary and sufficient conditions for $R_\nu[\alpha]$ to be integrally closed. We further characterize the integral closedness of $R_\nu[\alpha]$ which is based on information about the valuations on $K(\alpha)$ extending $\nu$. Our results enhance and generalize some existing results as well as provide applications and examples.

Keywords: Dedekind criterion, valued field, extensions of a valuation, integral closure.

UDC: 512.62

MSC: 35R30

Received: 17.01.2021
Revised: 12.04.2021
Accepted: 14.04.2021

DOI: 10.33048/smzh.2021.62.509


 English version:
Siberian Mathematical Journal, 2021, 62:5, 868–875

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024