RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2021 Volume 62, Number 5, Pages 1173–1187 (Mi smj7622)

This article is cited in 1 paper

On the number of frequency hypercubes $\mathrm{F}^n(4;2,2)$

M. Shiab, Sh. Wangb, X. Lib, D. S. Krotovc

a Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education
b School of Mathematical Sciences, Anhui University, Hefei, China
c Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: A frequency $n$-cube $\mathrm{F}^n(4;2,2)$ is an $n$-dimensional $4$-by-…-by-$4$ array filled by $0$s and $1$s such that each line contains exactly two $1$s. We classify the frequency $4$-cubes $\mathrm{F}^4(4;2,2)$, find a testing set of size $25$ for $\mathrm{F}^3(4;2,2)$, and derive an upper bound on the number of $\mathrm{F}^n(4;2,2)$. Additionally, for every $n$ greater than $2$, we construct an $\mathrm{F}^n(4;2,2)$ that cannot be refined to a Latin hypercube, while each of its sub-$\mathrm{F}^{n-1}(4;2,2)$ can.

Keywords: frequency hypercube, frequency square, Latin hypercube, testing set, MDS code.

UDC: 517

Received: 20.10.2020
Revised: 15.05.2021
Accepted: 11.06.2021

DOI: 10.33048/smzh.2021.62.516


 English version:
Siberian Mathematical Journal, 2021, 62:5, 951–962

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024