RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 2, Pages 316–333 (Mi smj7659)

This article is cited in 1 paper

Values of the permanent function on multidimensional $(0,1)$-matrices

A. E. Gutermanabc, I. M. Evseevab, A. A. Taranenkod

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We study the range of the permanent function for the multidimensional matrices of $0$ and $1$. The main result is a multidimensional version for the Brualdi–Newman upper bound on the consecutive values of the permanent (1965). Moreover, we deduce a formula for the permanent of the multidimensional $(0,1)$-matrices through the number of partial zero diagonals. Using the formula, we evaluate the permanents of the $(0,1)$-matrices with a few zeros and estimate the permanents of the matrices whose all zero entries are located in several orthogonal hyperplanes. We consider some divisibility properties of the permanent and illustrate the results by studying the values of the permanent for the $3$-dimensional $(0,1)$-matrices of order $3$.

Keywords: permanent, multidimensional matrix, $(0,1)$-matrix, Brualdi–Newman theorem.

UDC: 512.643+519.142

MSC: 35R30

Received: 31.05.2021
Revised: 21.09.2021
Accepted: 11.10.2021

DOI: 10.33048/smzh.2022.63.205


 English version:
Siberian Mathematical Journal, 2022, 63:2, 262–276


© Steklov Math. Inst. of RAS, 2024