RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 4, Pages 870–883 (Mi smj7700)

Existence and uniqueness of the solution to a degenerate third boundary value problem for a multidimensional parabolic equation

A. I. Kozhanova, V. V. Shubinb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University

Abstract: We study the well-posedness of a third boundary value problem for a multidimensional parabolic equation in the case when the coefficient of the conormal derivative vanishes at some points. We show that under some conditions on the sign of this coefficient there exists nonexistence or nonuniqueness of a solution in the conventional anisotropic Sobolev space. Using the regularization method, we prove existence and uniqueness theorems for the regular solution in suitable weighted spaces.

Keywords: parabolic equation, third boundary value problem, degeneration, existence, uniqueness.

UDC: 517.95

Received: 23.11.2021
Revised: 05.01.2022
Accepted: 10.02.2022

DOI: 10.33048/smzh.2022.63.413


 English version:
Siberian Mathematical Journal, 2022, 63:4, 723–734


© Steklov Math. Inst. of RAS, 2024