RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 4, Pages 911–923 (Mi smj7703)

This article is cited in 3 papers

Functional-differential equations with dilation and symmetry

L. E. Rossovskiia, A. A. Tovsultanovb

a Peoples' Friendship University of Russia, Moscow
b Chechen State University, Grozny

Abstract: We examine the Dirichlet problem in a bounded plane domain for a strongly elliptic functional-differential equation of the second order containing the argument transformations $x\mapsto px$ ($p>0$) and $x\mapsto-x$ in higher-order derivatives. The study of solvability of the problem relies on a Gårding-type inequality for which some necessary and sufficient conditions are obtained in algebraic form.

Keywords: elliptic functional-differential equation, boundary value problem, Gårding-type inequality.

UDC: 517.95+517.929

MSC: 35R30

Received: 26.09.2021
Revised: 09.04.2022
Accepted: 15.04.2022

DOI: 10.33048/smzh.2022.63.416


 English version:
Siberian Mathematical Journal, 2022, 63:4, 758–768

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024