RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 6, Pages 1224–1236 (Mi smj7726)

This article is cited in 1 paper

Approximation and Carleman formulas for solutions to parabolic Lamé-type operators in cylindrical domains

P. Yu. Vilkov, I. A. Kurilenko, A. A. Shlapunov

Siberian Federal University, Krasnoyarsk

Abstract: Assume that $s \in {\Bbb N}$ and $T_1,T_2 \in {\Bbb R}$, with $T_1<T_2$. Assume further that $\Omega$ and $\omega $ are bounded domains in ${\Bbb R}^n$, with $n \geq 1$, such that $\omega \subset \Omega$ and the complement $\Omega \setminus \omega$ has no nonempty compact components in $\Omega$. We study the approximation of solutions in the Lebesgue space $L^2(\omega \times (T_1,T_2))$ to parabolic Lamé-type operators in the cylindrical domain $\omega \times (T_1,T_2) \subset {\Bbb R}^{n+1}$ by more regular solutions in the larger domain $\Omega \times (T_1,T_2)$. As application of the approximation theorems, we construct some Carleman formulas for recovering solutions to these parabolic operators in the Sobolev space $H^{2s,s}(\Omega \times (T_1,T_2))$ via the values of the solutions and the corresponding stress tensors on a part of the lateral surface of the cylinder.

Keywords: parabolic Lamé-type operator, approximation theorem, Carleman formula.

UDC: 517.9

MSC: 35R30

Received: 17.02.2022
Revised: 22.05.2022
Accepted: 15.06.2022

DOI: 10.33048/smzh.2022.63.604


 English version:
Siberian Mathematical Journal, 2022, 63:6, 1049–1059


© Steklov Math. Inst. of RAS, 2024